Go-更多类型
# 指针
Go 拥有指针。指针保存了值的内存地址。
类型 *T 是指向 T 类型值的指针。其零值为 nil。
var p *int
& 操作符会生成一个指向其操作数的指针。
i := 42
p = &i
* 操作符表示指针指向的底层值。
fmt.Println(*p) // 通过指针 p 读取 i
*p = 21 // 通过指针 p 设置 i
这也就是通常所说的“间接引用”或“重定向”。
与 C 不同,Go 没有指针运算。
package main
import "fmt"
func main() {
i, j := 42, 2701
p := &i // 指向 i
fmt.Println(*p) // 通过指针读取 i 的值
*p = 21 // 通过指针设置 i 的值
fmt.Println(i) // 查看 i 的值
p = &j // 指向 j
*p = *p / 37 // 通过指针对 j 进行除法运算
fmt.Println(j) // 查看 j 的值
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
结果:
42
21
73
2
3
# 结构体
一个结构体(struct)就是一组字段(field)。
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
fmt.Println(Vertex{1, 2})
}
2
3
4
5
6
7
8
9
10
11
12
13
结果:
{1 2}
# 结构体字段
结构体字段使用点号来访问。
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
v := Vertex{1, 2}
v.X = 4
fmt.Println(v.X)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
结果:
4
# 结构体指针
结构体字段可以通过结构体指针来访问。
如果我们有一个指向结构体的指针 p,那么可以通过 (*p).X 来访问其字段 X。不过这么写太啰嗦了,所以语言也允许我们使用隐式间接引用,直接写 p.X 就可以。
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
v := Vertex{1, 2}
p := &v
p.X = 1e9
fmt.Println(v)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
结果:
{1000000000 2}
# 结构体文法
结构体文法通过直接列出字段的值来新分配一个结构体。
使用 Name: 语法可以仅列出部分字段。(字段名的顺序无关。)
特殊的前缀 & 返回一个指向结构体的指针。
package main
import "fmt"
type Vertex struct {
X, Y int
}
var (
v1 = Vertex{1, 2} // 创建一个 Vertex 类型的结构体
v2 = Vertex{X: 1} // Y:0 被隐式地赋予
v3 = Vertex{} // X:0 Y:0
p = &Vertex{1, 2} // 创建一个 *Vertex 类型的结构体(指针)
)
func main() {
fmt.Println(v1, p, v2, v3)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
结果:
{1 2} &{1 2} {1 0} {0 0}
# 数组
类型 [n]T 表示拥有 n 个 T 类型的值的数组。
表达式
var a [10]int
会将变量 a 声明为拥有 10 个整数的数组。
数组的长度是其类型的一部分,因此数组不能改变大小。这看起来是个限制,不过没关系,Go 提供了更加便利的方式来使用数组。
package main
import "fmt"
func main() {
var a [2]string
a[0] = "Hello"
a[1] = "World"
fmt.Println(a[0], a[1])
fmt.Println(a)
primes := [6]int{2, 3, 5, 7, 11, 13}
fmt.Println(primes)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
结果:
Hello World
[Hello World]
[2 3 5 7 11 13]
2
3
# 切片
每个数组的大小都是固定的。而切片则为数组元素提供动态大小的、灵活的视角。在实践中,切片比数组更常用。
类型 []T 表示一个元素类型为 T 的切片。
切片通过两个下标来界定,即一个上界和一个下界,二者以冒号分隔:
a[low : high] 它会选择一个半开区间,包括第一个元素,但排除最后一个元素。
以下表达式创建了一个切片,它包含 a 中下标从 1 到 3 的元素:
a[1:4]
package main
import "fmt"
func main() {
primes := [6]int{2, 3, 5, 7, 11, 13}
var s []int = primes[1:4]
fmt.Println(s)
}
2
3
4
5
6
7
8
9
10
结果:
[3 5 7]
# 切片就像数组的引用
切片并不存储任何数据,它只是描述了底层数组中的一段。
更改切片的元素会修改其底层数组中对应的元素。
与它共享底层数组的切片都会观测到这些修改。
package main
import "fmt"
func main() {
names := [4]string{
"John",
"Paul",
"George",
"Ringo",
}
fmt.Println(names)
a := names[0:2]
b := names[1:3]
fmt.Println(a, b)
b[0] = "XXX"
fmt.Println(a, b)
fmt.Println(names)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
结果:
[John Paul George Ringo]
[John Paul] [Paul George]
[John XXX] [XXX George]
[John XXX George Ringo]
2
3
4
# 切片文法
切片文法类似于没有长度的数组文法。
这是一个数组文法:
[3]bool{true, true, false}
下面这样则会创建一个和上面相同的数组,然后构建一个引用了它的切片:
[]bool{true, true, false}
package main
import "fmt"
func main() {
q := []int{2, 3, 5, 7, 11, 13}
fmt.Println(q)
r := []bool{true, false, true, true, false, true}
fmt.Println(r)
s := []struct {
i int
b bool
}{
{2, true},
{3, false},
{5, true},
{7, true},
{11, false},
{13, true},
}
fmt.Println(s)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
结果:
[2 3 5 7 11 13]
[true false true true false true]
[{2 true} {3 false} {5 true} {7 true} {11 false} {13 true}]
2
3
# 切片的默认行为
在进行切片时,你可以利用它的默认行为来忽略上下界。
切片下界的默认值为 0,上界则是该切片的长度。
对于数组
var a [10]int
来说,以下切片是等价的:
a[0:10]
a[:10]
a[0:]
a[:]
package main
import "fmt"
func main() {
s := []int{2, 3, 5, 7, 11, 13}
s = s[1:4]
fmt.Println(s)
s = s[:2]
fmt.Println(s)
s = s[1:]
fmt.Println(s)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
结果:
[3 5 7]
[3 5]
[5]
2
3
# 切片的长度与容量
切片拥有 长度 和 容量。
切片的长度就是它所包含的元素个数。
切片的容量是从它的第一个元素开始数,到其底层数组元素末尾的个数。
切片 s 的长度和容量可通过表达式 len(s) 和 cap(s) 来获取。
你可以通过重新切片来扩展一个切片,给它提供足够的容量。试着修改示例程序中的切片操作,向外扩展它的容量,看看会发生什么。
package main
import "fmt"
func main() {
s := []int{2, 3, 5, 7, 11, 13}
printSlice(s)
// 截取切片使其长度为 0
s = s[:0]
printSlice(s)
// 拓展其长度
s = s[:4]
printSlice(s)
// 舍弃前两个值
s = s[2:]
printSlice(s)
}
func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
结果:
len=6 cap=6 [2 3 5 7 11 13]
len=0 cap=6 []
len=4 cap=6 [2 3 5 7]
len=2 cap=4 [5 7]
2
3
4
# nil 切片
切片的零值是 nil。
nil 切片的长度和容量为 0 且没有底层数组。
package main
import "fmt"
func main() {
var s []int
fmt.Println(s, len(s), cap(s))
if s == nil {
fmt.Println("nil!")
}
}
2
3
4
5
6
7
8
9
10
11
结果:
[] 0 0
nil!
2
# 用 make 创建切片
切片可以用内建函数 make 来创建,这也是你创建动态数组的方式。
make 函数会分配一个元素为零值的数组并返回一个引用了它的切片:
a := make([]int, 5) // len(a)=5
要指定它的容量,需向 make 传入第三个参数:
b := make([]int, 0, 5) // len(b)=0, cap(b)=5
b = b[:cap(b)] // len(b)=5, cap(b)=5
b = b[1:] // len(b)=4, cap(b)=4
package main
import "fmt"
func main() {
a := make([]int, 5)
printSlice("a", a)
b := make([]int, 0, 5)
printSlice("b", b)
c := b[:2]
printSlice("c", c)
d := c[2:5]
printSlice("d", d)
}
func printSlice(s string, x []int) {
fmt.Printf("%s len=%d cap=%d %v\n",
s, len(x), cap(x), x)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
结果:
a len=5 cap=5 [0 0 0 0 0]
b len=0 cap=5 []
c len=2 cap=5 [0 0]
d len=3 cap=3 [0 0 0]
2
3
4
# 切片的切片
切片可包含任何类型,甚至包括其它的切片。
package main
import (
"fmt"
"strings"
)
func main() {
// 创建一个井字板(经典游戏)
board := [][]string{
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
}
// 两个玩家轮流打上 X 和 O
board[0][0] = "X"
board[2][2] = "O"
board[1][2] = "X"
board[1][0] = "O"
board[0][2] = "X"
for i := 0; i < len(board); i++ {
fmt.Printf("%s\n", strings.Join(board[i], " "))
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
结果:
X _ X
O _ X
_ _ O
2
3
# 向切片追加元素
为切片追加新的元素是种常用的操作,为此 Go 提供了内建的 append 函数。内建函数的文档对此函数有详细的介绍。
func append(s []T, vs ...T) []T
append 的第一个参数 s 是一个元素类型为 T 的切片,其余类型为 T 的值将会追加到该切片的末尾。
append 的结果是一个包含原切片所有元素加上新添加元素的切片。
当 s 的底层数组太小,不足以容纳所有给定的值时,它就会分配一个更大的数组。返回的切片会指向这个新分配的数组。
(要了解关于切片的更多内容,请阅读文章 Go 切片:用法和本质 (opens new window)。)
package main
import "fmt"
func main() {
var s []int
printSlice(s)
// 添加一个空切片
s = append(s, 0)
printSlice(s)
// 这个切片会按需增长
s = append(s, 1)
printSlice(s)
// 可以一次性添加多个元素
s = append(s, 2, 3, 4)
printSlice(s)
}
func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
结果:
len=0 cap=0 []
len=1 cap=1 [0]
len=2 cap=2 [0 1]
len=5 cap=6 [0 1 2 3 4]
2
3
4
# Range
for 循环的 range 形式可遍历切片或映射。
当使用 for 循环遍历切片时,每次迭代都会返回两个值。第一个值为当前元素的下标,第二个值为该下标所对应元素的一份副本。
package main
import "fmt"
var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}
func main() {
for i, v := range pow {
fmt.Printf("2**%d = %d\n", i, v)
}
}
2
3
4
5
6
7
8
9
10
11
结果:
2**0 = 1
2**1 = 2
2**2 = 4
2**3 = 8
2**4 = 16
2**5 = 32
2**6 = 64
2**7 = 128
2
3
4
5
6
7
8
# range(续)
可以将下标或值赋予 _ 来忽略它。
for i, _ := range pow
for _, value := range pow
若你只需要索引,忽略第二个变量即可。
for i := range pow
package main
import "fmt"
func main() {
pow := make([]int, 10)
for i := range pow {
pow[i] = 1 << uint(i) // == 2**i
}
for _, value := range pow {
fmt.Printf("%d\n", value)
}
}
2
3
4
5
6
7
8
9
10
11
12
13
结果:
1
2
4
8
16
32
64
128
256
512
2
3
4
5
6
7
8
9
10
# 练习:切片
实现 Pic。它应当返回一个长度为 dy 的切片,其中每个元素是一个长度为 dx,元素类型为 uint8 的切片。当你运行此程序时,它会将每个整数解释为灰度值(好吧,其实是蓝度值)并显示它所对应的图像。
图像的选择由你来定。几个有趣的函数包括 (x+y)/2, xy, x^y, xlog(y) 和 x%(y+1)。
(提示:需要使用循环来分配 [][]uint8 中的每个 []uint8;请使用 uint8(intValue) 在类型之间转换;你可能会用到 math 包中的函数。)
package main
import "golang.org/x/tour/pic"
func Pic(dx, dy int) [][]uint8 {
}
func main() {
pic.Show(Pic)
}
2
3
4
5
6
7
8
9
10
结果:
# 映射
映射将键映射到值。
映射的零值为 nil 。nil 映射既没有键,也不能添加键。
make 函数会返回给定类型的映射,并将其初始化备用。
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m map[string]Vertex
func main() {
m = make(map[string]Vertex)
m["Bell Labs"] = Vertex{
40.68433, -74.39967,
}
fmt.Println(m["Bell Labs"])
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
结果:
{40.68433 -74.39967}
# 映射的文法
映射的文法与结构体相似,不过必须有键名。
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m = map[string]Vertex{
"Bell Labs": Vertex{
40.68433, -74.39967,
},
"Google": Vertex{
37.42202, -122.08408,
},
}
func main() {
fmt.Println(m)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
结果:
map[Bell Labs:{40.68433 -74.39967} Google:{37.42202 -122.08408}]
# 映射的文法(续)
若顶级类型只是一个类型名,你可以在文法的元素中省略它。
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m = map[string]Vertex{
"Bell Labs": {40.68433, -74.39967},
"Google": {37.42202, -122.08408},
}
func main() {
fmt.Println(m)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
结果:
map[Bell Labs:{40.68433 -74.39967} Google:{37.42202 -122.08408}]
# 修改映射
在映射 m 中插入或修改元素:
m[key] = elem
获取元素:
elem = m[key]
删除元素:
delete(m, key)
通过双赋值检测某个键是否存在:
elem, ok = m[key]
若 key 在 m 中,ok 为 true ;否则,ok 为 false。
若 key 不在映射中,那么 elem 是该映射元素类型的零值。
同样的,当从映射中读取某个不存在的键时,结果是映射的元素类型的零值。
注 :若 elem 或 ok 还未声明,你可以使用短变量声明:
elem, ok := m[key]
package main
import "fmt"
func main() {
m := make(map[string]int)
m["Answer"] = 42
fmt.Println("The value:", m["Answer"])
m["Answer"] = 48
fmt.Println("The value:", m["Answer"])
delete(m, "Answer")
fmt.Println("The value:", m["Answer"])
v, ok := m["Answer"]
fmt.Println("The value:", v, "Present?", ok)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
结果:
The value: 42
The value: 48
The value: 0
The value: 0 Present? false
2
3
4
# 练习:映射
实现 WordCount。它应当返回一个映射,其中包含字符串 s 中每个“单词”的个数。函数 wc.Test 会对此函数执行一系列测试用例,并输出成功还是失败。
你会发现 strings.Fields 很有帮助。
package main
import (
"golang.org/x/tour/wc"
)
func WordCount(s string) map[string]int {
return map[string]int{"x": 1}
}
func main() {
wc.Test(WordCount)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
结果:
# 函数值
函数也是值。它们可以像其它值一样传递。
函数值可以用作函数的参数或返回值。
package main
import (
"fmt"
"math"
)
func compute(fn func(float64, float64) float64) float64 {
return fn(3, 4)
}
func main() {
hypot := func(x, y float64) float64 {
return math.Sqrt(x*x + y*y)
}
fmt.Println(hypot(5, 12))
fmt.Println(compute(hypot))
fmt.Println(compute(math.Pow))
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
结果:
13
5
81
2
3
# 函数的闭包
Go 函数可以是一个闭包。闭包是一个函数值,它引用了其函数体之外的变量。该函数可以访问并赋予其引用的变量的值,换句话说,该函数被这些变量“绑定”在一起。
例如,函数 adder 返回一个闭包。每个闭包都被绑定在其各自的 sum 变量上。
package main
import "fmt"
func adder() func(int) int {
sum := 0
return func(x int) int {
sum += x
return sum
}
}
func main() {
pos, neg := adder(), adder()
for i := 0; i < 10; i++ {
fmt.Println(
pos(i),
neg(-2*i),
)
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
结果:
0 0
1 -2
3 -6
6 -12
10 -20
15 -30
21 -42
28 -56
36 -72
45 -90
2
3
4
5
6
7
8
9
10
# 练习:斐波纳契闭包
让我们用函数做些好玩的事情。
实现一个 fibonacci 函数,它返回一个函数(闭包),该闭包返回一个斐波纳契数列 (0, 1, 1, 2, 3, 5, ...)
。
package main
import "fmt"
// 返回一个“返回int的函数”
func fibonacci() func() int {
a := 0
b := 0
return func() int {
if (a == 0) && (b == 0) {
b = 1
return a
}
c := a + b
a = b
b = c
return a
}
}
func main() {
f := fibonacci()
for i := 0; i < 10; i++ {
fmt.Println(f())
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
结果:
0
1
1
2
3
5
8
13
21
34
2
3
4
5
6
7
8
9
10