苏呆呆的博客 苏呆呆的博客
首页
  • C++
  • Java
  • Go
  • 面向对象
  • 设计模式
  • 领域驱动设计
  • Spring
常用工具
  • 本站

    • 分类
    • 标签
    • 归档
  • 我的

    • 关于
    • 收藏
GitHub (opens new window)

苏呆呆

一个向往美好生活的笨人。
首页
  • C++
  • Java
  • Go
  • 面向对象
  • 设计模式
  • 领域驱动设计
  • Spring
常用工具
  • 本站

    • 分类
    • 标签
    • 归档
  • 我的

    • 关于
    • 收藏
GitHub (opens new window)
  • HelloWorld
  • 基础
  • 控制流
  • 更多类型
    • 指针
    • 结构体
    • 结构体字段
    • 结构体指针
    • 结构体文法
    • 数组
    • 切片
    • 切片就像数组的引用
    • 切片文法
    • 切片的默认行为
    • 切片的长度与容量
    • nil 切片
    • 用 make 创建切片
    • 切片的切片
    • 向切片追加元素
    • Range
    • range(续)
    • 练习:切片
    • 映射
    • 映射的文法
    • 映射的文法(续)
    • 修改映射
    • 练习:映射
    • 函数值
    • 函数的闭包
    • 练习:斐波纳契闭包
  • 方法
  • 并发
  • 编程语言--golang
su-dd
2023-03-13
目录

更多类型

# 指针

Go 拥有指针。指针保存了值的内存地址。

类型 *T 是指向 T 类型值的指针。其零值为 nil。

var p *int

& 操作符会生成一个指向其操作数的指针。

i := 42
p = &i

* 操作符表示指针指向的底层值。

fmt.Println(*p) // 通过指针 p 读取 i
*p = 21         // 通过指针 p 设置 i

这也就是通常所说的“间接引用”或“重定向”。

与 C 不同,Go 没有指针运算。

package main

import "fmt"

func main() {
	i, j := 42, 2701

	p := &i         // 指向 i
	fmt.Println(*p) // 通过指针读取 i 的值
	*p = 21         // 通过指针设置 i 的值
	fmt.Println(i)  // 查看 i 的值

	p = &j         // 指向 j
	*p = *p / 37   // 通过指针对 j 进行除法运算
	fmt.Println(j) // 查看 j 的值
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

结果:

42
21
73
1
2
3

# 结构体

一个结构体(struct)就是一组字段(field)。

package main

import "fmt"

type Vertex struct {
	X int
	Y int
}

func main() {
	fmt.Println(Vertex{1, 2})
}

1
2
3
4
5
6
7
8
9
10
11
12
13

结果:

{1 2}
1

# 结构体字段

结构体字段使用点号来访问。

package main

import "fmt"

type Vertex struct {
	X int
	Y int
}

func main() {
	v := Vertex{1, 2}
	v.X = 4
	fmt.Println(v.X)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

结果:

4
1

# 结构体指针

结构体字段可以通过结构体指针来访问。

如果我们有一个指向结构体的指针 p,那么可以通过 (*p).X 来访问其字段 X。不过这么写太啰嗦了,所以语言也允许我们使用隐式间接引用,直接写 p.X 就可以。

package main

import "fmt"

type Vertex struct {
	X int
	Y int
}

func main() {
	v := Vertex{1, 2}
	p := &v
	p.X = 1e9
	fmt.Println(v)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

结果:

{1000000000 2}
1

# 结构体文法

结构体文法通过直接列出字段的值来新分配一个结构体。

使用 Name: 语法可以仅列出部分字段。(字段名的顺序无关。)

特殊的前缀 & 返回一个指向结构体的指针。

package main

import "fmt"

type Vertex struct {
	X, Y int
}

var (
	v1 = Vertex{1, 2}  // 创建一个 Vertex 类型的结构体
	v2 = Vertex{X: 1}  // Y:0 被隐式地赋予
	v3 = Vertex{}      // X:0 Y:0
	p  = &Vertex{1, 2} // 创建一个 *Vertex 类型的结构体(指针)
)

func main() {
	fmt.Println(v1, p, v2, v3)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

结果:

{1 2} &{1 2} {1 0} {0 0}
1

# 数组

类型 [n]T 表示拥有 n 个 T 类型的值的数组。

表达式

var a [10]int

会将变量 a 声明为拥有 10 个整数的数组。

数组的长度是其类型的一部分,因此数组不能改变大小。这看起来是个限制,不过没关系,Go 提供了更加便利的方式来使用数组。

package main

import "fmt"

func main() {
	var a [2]string
	a[0] = "Hello"
	a[1] = "World"
	fmt.Println(a[0], a[1])
	fmt.Println(a)

	primes := [6]int{2, 3, 5, 7, 11, 13}
	fmt.Println(primes)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

结果:

Hello World
[Hello World]
[2 3 5 7 11 13]
1
2
3

# 切片

每个数组的大小都是固定的。而切片则为数组元素提供动态大小的、灵活的视角。在实践中,切片比数组更常用。

类型 []T 表示一个元素类型为 T 的切片。

切片通过两个下标来界定,即一个上界和一个下界,二者以冒号分隔:

a[low : high] 它会选择一个半开区间,包括第一个元素,但排除最后一个元素。

以下表达式创建了一个切片,它包含 a 中下标从 1 到 3 的元素:

a[1:4]

package main

import "fmt"

func main() {
	primes := [6]int{2, 3, 5, 7, 11, 13}

	var s []int = primes[1:4]
	fmt.Println(s)
}
1
2
3
4
5
6
7
8
9
10

结果:

[3 5 7]
1

# 切片就像数组的引用

切片并不存储任何数据,它只是描述了底层数组中的一段。

更改切片的元素会修改其底层数组中对应的元素。

与它共享底层数组的切片都会观测到这些修改。

package main

import "fmt"

func main() {
	names := [4]string{
		"John",
		"Paul",
		"George",
		"Ringo",
	}
	fmt.Println(names)

	a := names[0:2]
	b := names[1:3]
	fmt.Println(a, b)

	b[0] = "XXX"
	fmt.Println(a, b)
	fmt.Println(names)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

结果:

[John Paul George Ringo]
[John Paul] [Paul George]
[John XXX] [XXX George]
[John XXX George Ringo]
1
2
3
4

# 切片文法

切片文法类似于没有长度的数组文法。

这是一个数组文法:

[3]bool{true, true, false}

下面这样则会创建一个和上面相同的数组,然后构建一个引用了它的切片:

[]bool{true, true, false}
package main

import "fmt"

func main() {
	q := []int{2, 3, 5, 7, 11, 13}
	fmt.Println(q)

	r := []bool{true, false, true, true, false, true}
	fmt.Println(r)

	s := []struct {
		i int
		b bool
	}{
		{2, true},
		{3, false},
		{5, true},
		{7, true},
		{11, false},
		{13, true},
	}
	fmt.Println(s)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

结果:

[2 3 5 7 11 13]
[true false true true false true]
[{2 true} {3 false} {5 true} {7 true} {11 false} {13 true}]
1
2
3

# 切片的默认行为

在进行切片时,你可以利用它的默认行为来忽略上下界。

切片下界的默认值为 0,上界则是该切片的长度。

对于数组

var a [10]int

来说,以下切片是等价的:

a[0:10]
a[:10]
a[0:]
a[:]
package main

import "fmt"

func main() {
	s := []int{2, 3, 5, 7, 11, 13}

	s = s[1:4]
	fmt.Println(s)

	s = s[:2]
	fmt.Println(s)

	s = s[1:]
	fmt.Println(s)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

结果:

[3 5 7]
[3 5]
[5]
1
2
3

# 切片的长度与容量

切片拥有 长度 和 容量。

切片的长度就是它所包含的元素个数。

切片的容量是从它的第一个元素开始数,到其底层数组元素末尾的个数。

切片 s 的长度和容量可通过表达式 len(s) 和 cap(s) 来获取。

你可以通过重新切片来扩展一个切片,给它提供足够的容量。试着修改示例程序中的切片操作,向外扩展它的容量,看看会发生什么。

package main

import "fmt"

func main() {
	s := []int{2, 3, 5, 7, 11, 13}
	printSlice(s)

	// 截取切片使其长度为 0
	s = s[:0]
	printSlice(s)

	// 拓展其长度
	s = s[:4]
	printSlice(s)

	// 舍弃前两个值
	s = s[2:]
	printSlice(s)
}

func printSlice(s []int) {
	fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

结果:

len=6 cap=6 [2 3 5 7 11 13]
len=0 cap=6 []
len=4 cap=6 [2 3 5 7]
len=2 cap=4 [5 7]
1
2
3
4

# nil 切片

切片的零值是 nil。

nil 切片的长度和容量为 0 且没有底层数组。

package main

import "fmt"

func main() {
	var s []int
	fmt.Println(s, len(s), cap(s))
	if s == nil {
		fmt.Println("nil!")
	}
}
1
2
3
4
5
6
7
8
9
10
11

结果:

[] 0 0
nil!
1
2

# 用 make 创建切片

切片可以用内建函数 make 来创建,这也是你创建动态数组的方式。

make 函数会分配一个元素为零值的数组并返回一个引用了它的切片:

a := make([]int, 5)  // len(a)=5

要指定它的容量,需向 make 传入第三个参数:

b := make([]int, 0, 5) // len(b)=0, cap(b)=5

b = b[:cap(b)] // len(b)=5, cap(b)=5
b = b[1:]      // len(b)=4, cap(b)=4
package main

import "fmt"

func main() {
	a := make([]int, 5)
	printSlice("a", a)

	b := make([]int, 0, 5)
	printSlice("b", b)

	c := b[:2]
	printSlice("c", c)

	d := c[2:5]
	printSlice("d", d)
}

func printSlice(s string, x []int) {
	fmt.Printf("%s len=%d cap=%d %v\n",
		s, len(x), cap(x), x)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

结果:

a len=5 cap=5 [0 0 0 0 0]
b len=0 cap=5 []
c len=2 cap=5 [0 0]
d len=3 cap=3 [0 0 0]
1
2
3
4

# 切片的切片

切片可包含任何类型,甚至包括其它的切片。

package main

import (
	"fmt"
	"strings"
)

func main() {
	// 创建一个井字板(经典游戏)
	board := [][]string{
		[]string{"_", "_", "_"},
		[]string{"_", "_", "_"},
		[]string{"_", "_", "_"},
	}

	// 两个玩家轮流打上 X 和 O
	board[0][0] = "X"
	board[2][2] = "O"
	board[1][2] = "X"
	board[1][0] = "O"
	board[0][2] = "X"

	for i := 0; i < len(board); i++ {
		fmt.Printf("%s\n", strings.Join(board[i], " "))
	}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

结果:

X _ X
O _ X
_ _ O
1
2
3

# 向切片追加元素

为切片追加新的元素是种常用的操作,为此 Go 提供了内建的 append 函数。内建函数的文档对此函数有详细的介绍。

func append(s []T, vs ...T) []T

append 的第一个参数 s 是一个元素类型为 T 的切片,其余类型为 T 的值将会追加到该切片的末尾。

append 的结果是一个包含原切片所有元素加上新添加元素的切片。

当 s 的底层数组太小,不足以容纳所有给定的值时,它就会分配一个更大的数组。返回的切片会指向这个新分配的数组。

(要了解关于切片的更多内容,请阅读文章 Go 切片:用法和本质 (opens new window)。)

package main

import "fmt"

func main() {
	var s []int
	printSlice(s)

	// 添加一个空切片
	s = append(s, 0)
	printSlice(s)

	// 这个切片会按需增长
	s = append(s, 1)
	printSlice(s)

	// 可以一次性添加多个元素
	s = append(s, 2, 3, 4)
	printSlice(s)
}

func printSlice(s []int) {
	fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

结果:

len=0 cap=0 []
len=1 cap=1 [0]
len=2 cap=2 [0 1]
len=5 cap=6 [0 1 2 3 4]
1
2
3
4

# Range

for 循环的 range 形式可遍历切片或映射。

当使用 for 循环遍历切片时,每次迭代都会返回两个值。第一个值为当前元素的下标,第二个值为该下标所对应元素的一份副本。

package main

import "fmt"

var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}

func main() {
	for i, v := range pow {
		fmt.Printf("2**%d = %d\n", i, v)
	}
}
1
2
3
4
5
6
7
8
9
10
11

结果:

2**0 = 1
2**1 = 2
2**2 = 4
2**3 = 8
2**4 = 16
2**5 = 32
2**6 = 64
2**7 = 128
1
2
3
4
5
6
7
8

# range(续)

可以将下标或值赋予 _ 来忽略它。

for i, _ := range pow
for _, value := range pow

若你只需要索引,忽略第二个变量即可。

for i := range pow
package main

import "fmt"

func main() {
	pow := make([]int, 10)
	for i := range pow {
		pow[i] = 1 << uint(i) // == 2**i
	}
	for _, value := range pow {
		fmt.Printf("%d\n", value)
	}
}
1
2
3
4
5
6
7
8
9
10
11
12
13

结果:

1
2
4
8
16
32
64
128
256
512
1
2
3
4
5
6
7
8
9
10

# 练习:切片

实现 Pic。它应当返回一个长度为 dy 的切片,其中每个元素是一个长度为 dx,元素类型为 uint8 的切片。当你运行此程序时,它会将每个整数解释为灰度值(好吧,其实是蓝度值)并显示它所对应的图像。

图像的选择由你来定。几个有趣的函数包括 (x+y)/2, xy, x^y, xlog(y) 和 x%(y+1)。

(提示:需要使用循环来分配 [][]uint8 中的每个 []uint8;请使用 uint8(intValue) 在类型之间转换;你可能会用到 math 包中的函数。)

package main

import "golang.org/x/tour/pic"

func Pic(dx, dy int) [][]uint8 {
}

func main() {
	pic.Show(Pic)
}
1
2
3
4
5
6
7
8
9
10

结果:

# 映射

映射将键映射到值。

映射的零值为 nil 。nil 映射既没有键,也不能添加键。

make 函数会返回给定类型的映射,并将其初始化备用。

package main

import "fmt"

type Vertex struct {
	Lat, Long float64
}

var m map[string]Vertex

func main() {
	m = make(map[string]Vertex)
	m["Bell Labs"] = Vertex{
		40.68433, -74.39967,
	}
	fmt.Println(m["Bell Labs"])
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

结果:

{40.68433 -74.39967}
1

# 映射的文法

映射的文法与结构体相似,不过必须有键名。

package main

import "fmt"

type Vertex struct {
	Lat, Long float64
}

var m = map[string]Vertex{
	"Bell Labs": Vertex{
		40.68433, -74.39967,
	},
	"Google": Vertex{
		37.42202, -122.08408,
	},
}

func main() {
	fmt.Println(m)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

结果:

map[Bell Labs:{40.68433 -74.39967} Google:{37.42202 -122.08408}]
1

# 映射的文法(续)

若顶级类型只是一个类型名,你可以在文法的元素中省略它。

package main

import "fmt"

type Vertex struct {
	Lat, Long float64
}

var m = map[string]Vertex{
	"Bell Labs": {40.68433, -74.39967},
	"Google":    {37.42202, -122.08408},
}

func main() {
	fmt.Println(m)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

结果:

map[Bell Labs:{40.68433 -74.39967} Google:{37.42202 -122.08408}]
1

# 修改映射

在映射 m 中插入或修改元素:

m[key] = elem

获取元素:

elem = m[key]

删除元素:

delete(m, key)

通过双赋值检测某个键是否存在:

elem, ok = m[key]

若 key 在 m 中,ok 为 true ;否则,ok 为 false。

若 key 不在映射中,那么 elem 是该映射元素类型的零值。

同样的,当从映射中读取某个不存在的键时,结果是映射的元素类型的零值。

注 :若 elem 或 ok 还未声明,你可以使用短变量声明:

elem, ok := m[key]
package main

import "fmt"

func main() {
	m := make(map[string]int)

	m["Answer"] = 42
	fmt.Println("The value:", m["Answer"])

	m["Answer"] = 48
	fmt.Println("The value:", m["Answer"])

	delete(m, "Answer")
	fmt.Println("The value:", m["Answer"])

	v, ok := m["Answer"]
	fmt.Println("The value:", v, "Present?", ok)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

结果:

The value: 42
The value: 48
The value: 0
The value: 0 Present? false
1
2
3
4

# 练习:映射

实现 WordCount。它应当返回一个映射,其中包含字符串 s 中每个“单词”的个数。函数 wc.Test 会对此函数执行一系列测试用例,并输出成功还是失败。

你会发现 strings.Fields 很有帮助。

package main

import (
	"golang.org/x/tour/wc"
)

func WordCount(s string) map[string]int {
	return map[string]int{"x": 1}
}

func main() {
	wc.Test(WordCount)
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

结果:


1

# 函数值

函数也是值。它们可以像其它值一样传递。

函数值可以用作函数的参数或返回值。

package main

import (
	"fmt"
	"math"
)

func compute(fn func(float64, float64) float64) float64 {
	return fn(3, 4)
}

func main() {
	hypot := func(x, y float64) float64 {
		return math.Sqrt(x*x + y*y)
	}
	fmt.Println(hypot(5, 12))

	fmt.Println(compute(hypot))
	fmt.Println(compute(math.Pow))
}


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

结果:

13
5
81
1
2
3

# 函数的闭包

Go 函数可以是一个闭包。闭包是一个函数值,它引用了其函数体之外的变量。该函数可以访问并赋予其引用的变量的值,换句话说,该函数被这些变量“绑定”在一起。

例如,函数 adder 返回一个闭包。每个闭包都被绑定在其各自的 sum 变量上。

package main

import "fmt"

func adder() func(int) int {
	sum := 0
	return func(x int) int {
		sum += x
		return sum
	}
}

func main() {
	pos, neg := adder(), adder()
	for i := 0; i < 10; i++ {
		fmt.Println(
			pos(i),
			neg(-2*i),
		)
	}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

结果:

0 0
1 -2
3 -6
6 -12
10 -20
15 -30
21 -42
28 -56
36 -72
45 -90
1
2
3
4
5
6
7
8
9
10

# 练习:斐波纳契闭包

让我们用函数做些好玩的事情。

实现一个 fibonacci 函数,它返回一个函数(闭包),该闭包返回一个斐波纳契数列 (0, 1, 1, 2, 3, 5, ...)。

package main

import "fmt"

// 返回一个“返回int的函数”
func fibonacci() func() int {
  a := 0
	b := 0
	return func() int {
		if (a == 0) && (b == 0) {
			b = 1
			return a
		}
		c := a + b
		a = b
		b = c
		return a
	}
}

func main() {
	f := fibonacci()
	for i := 0; i < 10; i++ {
		fmt.Println(f())
	}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

结果:

0
1
1
2
3
5
8
13
21
34
1
2
3
4
5
6
7
8
9
10
编辑 (opens new window)
上次更新: 2023/03/16, 14:24:48
控制流
方法

← 控制流 方法→

最近更新
01
并发
03-16
02
Qt原子操作
03-15
03
方法
03-13
更多文章>
Theme by Vdoing | Copyright © 2022-2023 daidai | 皖ICP备2023000523号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式